Laser Patterning & Metallization to Reduce Process Steps for PCB Manufacturing


Reading time ( words)

Abstract

Glass offers a number of advantages as a dielectric material, such as a low coefficient of thermal expansion (CTE), high dimensional stability, high thermal conductivity and suitable dielectric constant. These properties make glass an ideal candidate for, among other things, package substrate and high-frequency PCB applications. We report here a novel process for the production of printed circuit boards and integrated circuit packaging using glass as both a dielectric medium and a platform for wiring simultaneously.

An ultrafast laser is used to etch away the desired pattern (pads, wires and vias) in the glass, and copper plating is “seeded” through the laser-based deposition of copper droplets. The seeded area is then plated using electroless plating followed by electroplating. Demonstrations of fine pitch wires, variable diameter through holes and blind vias, and a multilayer stack are shown. The deposits have a resistivity less than a factor of 1.5x that of bulk copper for 5-10 mm wires. Plated lines in borosilicate glass of 7-10 μm width and 5-20 μm depth and line spacing down to ~10 μm are demonstrated, as well as vias with a top diameter approaching 100 μm for 150 μm glass and 40 μm for 50 μm glass.

The process presents the potential for significant material savings in terms of base materials, process chemicals, and waste disposal/recycling costs (glass is on the order of 100-fold less expensive than some current high-frequency dielectrics, and wet processes account for a large part of standard PCB/substrate manufacturing). Additionally, the processes are amenable toward other dielectric materials such as FR-4, polyimide and PTFE-based materials.

Introduction

Increased demand for high data transmission rates is driving the development of smaller PCB features. Electrical circuits are reaching the physical limitations of traditional PCB dielectric materials under which electromagnetic compatibility can be controlled.

To read the full version of this article which appeared in the August 2017 issue of The PCB Magazine, click here.

Share


Suggested Items

New I-Connect007 Team Members Tour American Standard Circuits

11/06/2017 | Kiersten Rohde and Jonathan Zinski, I-Connect007
Recently, Anaya Vardya, CEO of American Standard Circuits, invited two of I-Connect007’s newest team members, IT coordinator Jonathan Zinski and Editor Kiersten Rohde, to tour his facility in West Chicago, Illinois. Happy Holden, resident PCB expert, also joined the newbies on their field trip to ASC. In the following articles, Jonathan and Kiersten describe their experience touring ASC. Special thanks to Anaya for hosting the I-Connect007 team.

Catching up with…Brigitflex

11/02/2017 | Dan Beaulieu
Today, Brigitflex is building unique custom-made boards for companies all over the world, from large defense and aerospace companies to small incubator companies inventing new products. They have become well-known as the shop to go to when nobody else can solve your problems.

Planning a PCB: Signal Integrity and Controlled Impedance Considerations

11/03/2017 | John (Josse) Steinar Johnsen, ELMATICA
Knowledge and experience are the two key elements when planning a PCB. Today’s PCB designers must have far more knowledge and understanding of the PCB production process than in the past. This is especially important when they plan and how they plan the stackup, via span, routing and power distribution.



Copyright © 2017 I-Connect007. All rights reserved.