Laser Patterning & Metallization to Reduce Process Steps for PCB Manufacturing


Reading time ( words)

Abstract

Glass offers a number of advantages as a dielectric material, such as a low coefficient of thermal expansion (CTE), high dimensional stability, high thermal conductivity and suitable dielectric constant. These properties make glass an ideal candidate for, among other things, package substrate and high-frequency PCB applications. We report here a novel process for the production of printed circuit boards and integrated circuit packaging using glass as both a dielectric medium and a platform for wiring simultaneously.

An ultrafast laser is used to etch away the desired pattern (pads, wires and vias) in the glass, and copper plating is “seeded” through the laser-based deposition of copper droplets. The seeded area is then plated using electroless plating followed by electroplating. Demonstrations of fine pitch wires, variable diameter through holes and blind vias, and a multilayer stack are shown. The deposits have a resistivity less than a factor of 1.5x that of bulk copper for 5-10 mm wires. Plated lines in borosilicate glass of 7-10 μm width and 5-20 μm depth and line spacing down to ~10 μm are demonstrated, as well as vias with a top diameter approaching 100 μm for 150 μm glass and 40 μm for 50 μm glass.

The process presents the potential for significant material savings in terms of base materials, process chemicals, and waste disposal/recycling costs (glass is on the order of 100-fold less expensive than some current high-frequency dielectrics, and wet processes account for a large part of standard PCB/substrate manufacturing). Additionally, the processes are amenable toward other dielectric materials such as FR-4, polyimide and PTFE-based materials.

Introduction

Increased demand for high data transmission rates is driving the development of smaller PCB features. Electrical circuits are reaching the physical limitations of traditional PCB dielectric materials under which electromagnetic compatibility can be controlled.

To read the full version of this article which appeared in the August 2017 issue of The PCB Magazine, click here.

Share

Print


Suggested Items

Making Materials Succeed: Past, Present, and Future Trends

05/20/2019 | Nolan Johnson, I-Connect007
Tony Senese, manager for the business development group at Panasonic EMBD, gives Nolan Johnson an overview of materials and components as well as changing business models and methods to make materials succeed and how to stay profitable.

Alun Morgan on the Future of PCB Materials

05/16/2019 | I-Connect007 Editorial Team
The I-Connect007 editorial team asked Alun Morgan, technology ambassador for Ventec International Group, to discuss materials at a high level. Our conversation delivered a detailed overview of the current state of the electronics industry.

Averatek on the Future of Additive and Semi-additive Processing

05/10/2019 | Barry Matties, I-Connect007
Averatek’s President and COO Mike Vinson talks with Barry Matties about the benefits semi-additive and additive processing can bring to the shop floor as well as some of the current challenges and limitations that continue to leave many manufacturers hesitant to implement the technology.



Copyright © 2019 I-Connect007. All rights reserved.