All About Flex: Considerations for Impedance Control in Flexible Circuits

Reading time ( words)

Impedance can be thought of as a system’s opposition to alternating or pulsing electronic current. The unit of measurement is ohms, the same unit of measurement in a direct current system. However, the components for calculating impedance are much more complex than DC resistance. For a direct current system, the resistance is related to the relative ease with which electrons can flow through the material.  Ohm’s law describes a fairly straightforward relationship between current and voltage (V=IR or R=V/I) where R is a constant number for any given material. Impedance is characterized by the equation including the DC resistance but also includes another component called reactance. Reactance is the ability of the system to store and release energy as current or voltage alternates. The equation for impedance is Z=R +iX, where iX is the reactance component. The reactance is a function of the capacitance of the system and the frequency of the alternating or pulsing current.

Why is impedance important?

Impedance is important for high-speed electronics. When frequencies become 200 MHz or higher, the impedance and impedance consistency becomes a significant factor in the system performance. During the last 20 years, electronic packages have become smaller, denser and faster. It is estimated that in 2000, only a small percentage of PCB and flexible printed circuit (FPCB) designs had an impedance requirement. As higher and higher frequencies continue their relentless march, impedance requirements today have become much more prevalent and important.

In a direct current system, when two components of different resistance are connected in series, the system resistance is simply equal to the two components added together (R1 +R2). The flow of the electrons is homogenous. The analogy is a garden hose where the flow of the water is the same throughout the hose.

In high-speed electronics, impedance does NOT behave the same way. High speed signals are like separate pulses propagating through the system. The current and magnetic pulses are affected by the impedance. When the pulses encounter a node of mismatched impedance, a flux of energy is induced which creates competing signals that can interfere with the main signal. The result is power loss and distortion of the signal. 

Many nodes of mismatched impedance can occur within a PCB system as attached components, conductor width, conductor spacing and dielectric thicknesses change. One way to deal with this issue is to isolate the signal traces so that the dielectric and geometries are identical throughout the signal path. This is called controlled impedance. In flexible circuits, there are two categories of designs that are typically used for controlled impedance: microstrip and stripline (Figure 1). Within the categories one can have single-ended transmission lines and differential pair transmission lines.


Figure 1: Designs for controlled impedance.

In both designs, the impedance is affected by the following:

  • Dielectric constant (Dk) of the materials
  • The DC resistance of the signal line
  • Distance between the signal lines and ground planes or signal line pairs


Suggested Items

PCB Technologies’ InPack to Focus on Miniaturization, Packaging

05/16/2022 | Andy Shaughnessy, Design007 Magazine
I recently spoke with PCB Technologies’ Jeff De Serrano, Yaniv Maydar, and Alon Menache about their new venture, InPack. They explain their plans to focus on advanced packaging, miniaturization, and other high-end technology, with much faster time to market, and they offer a view of the global market as well.

EIPC Technical Snapshot: Supporting Autonomous Driving

05/12/2022 | Pete Starkey, I-Connect007
EIPC’s 17th Technical Snapshot webinar on May 4 focused on developments in automotive electronics, particularly on advances in the technologies required to support the evolution of autonomous driving. The team brought together two expert speakers to present their detailed views on topics encompassed within “CASE,” the acronym that appears to be taking over the automotive industry.

Catching up with EISO Enterprises’ President Gary Chien

04/19/2022 | Dan Beaulieu, D.B. Management Group
While there are many Chinese companies now selling in the United States, I wanted to find one in Taiwan that is penetrating the U.S. market. I was delighted to come across EISO Enterprise Co. Ltd., a printed circuit board fabricator located in Taiwan. I know that the American companies are usually looking for PCB global partners in countries other than China, which made my conversation with Gary (Jung Kun) Chien all the more interesting, especially when he shared his thoughts on the U.S-China trade wars.

Copyright © 2022 I-Connect007. All rights reserved.