Factors Affecting the Adhesion of Thin Film Copper on Polyimide


Reading time ( words)

Abstract

The use of copper foils laminated to polyimide (PI) as flexible printed circuit board precursor is a standard practice in the PCB industry. We have previously described an approach to very thin copper laminates of coating uniform layers of nano copper inks and converting them into conductive foils via photonic sintering with a multi-bulb conveyor system, which is consistent with roll-to-roll manufacturing. The copper thickness of these foils can be augmented by electroplating. Very thin copper layers enable etching fine lines in the flexible circuit. These films must adhere tenaciously to the polyimide substrate. In this paper, we investigate the factors which improve and inhibit adhesion. It was found that the ink composition, photonic sintering conditions, substrate pretreatment, and the inclusion of layers (metal and organic) intermediate between the copper and the polyimide are important.

Ink factors include the intensity of photonic sintering. Better sintering leads to better cohesive strength of the nano copper layer. The ink solvent and the dispersant used to suspend the nanoparticles are significant both for adhesion and the colloidal stability of the dispersion. Pretreatment of the substrate by plasma roughening did not improve adhesion. We describe the effects of chromium and nickel interlayers which are typically used in standard foil laminates. Finally, we describe the types of peel strength testing used to assess adhesion.

Introduction

The goal of our ultra-thin film project is to create a thin (1−2 micron) film of uniform copper on flexible polyimide for application to flex circuits. Ultra-thin films allow very narrow copper lines on patterns created by photolithography, plating, and etching. Figure 1 depicts the invented process.

A very thin layer of nano copper ink is created on polyimide by coating techniques. A picture of a coating made in a roll-to-roll (R2R) manner on a slot die coating machine is shown at left in Figure 2.  After drying the ink (done by air impingement here), a film of copper nanoparticles in dispersant/binder of about 0.5−1.0 microns thick is produced. This film can be turned into a continuous film of conductive copper metal by photonic sintering with a flash lamp system. There have been developed special R2R machines with moving conveyors, multiple flash bulbs, and algorithms to control and interleave flashes to give uniform sintering of the coating[2]. On the other hand, the lab scale coatings are made by using an automatic Mayer bar coater (Figure 2, right), dried in a vacuum oven, and sintered by a single flash lamp unit it the lab. The resulting copper films are less uniform than the ones generated by the R2R process, and banding where the flashes overlap is usually observed. Alternatively, a uniform conductive copper film can be generated by sintering by immersing in a formic acid/argon reducing atmosphere at 190°C for an hour (Figure 3).

polyimide.jpg

Read the full article here.

 

Editor's Note: This article originally appeared in the August 2016 issue of The PCB Magazine.

Share




Suggested Items

Michael Carano: A Focus on Process Control, Part 2

09/28/2022 | I-Connect007 Editorial Team
In this second half of our conversation, Michael Carano discusses some of the metrics that fabricators need to consider before investing in new processes, especially process control technologies, and some of the challenges board shops face updating brownfield sites.

Catching Up With John Johnson, New Director of Business Development at ASC

09/28/2022 | Dan Beaulieu, D.B. Management Group
It’s always good to catch up with old friends, especially when you can start working together. I recently spoke with my friend John Johnson, who has joined American Standard Circuits as the director of business development. At ASC, John will be using the Averatek A-SAP process that he was previously involved with. He shares some of his background and provides insight on the best ways to use this semi-additive PCB fabrication process that opens the capability window for forming trace and space.

A Focus on Process Control, Part 1

09/27/2022 | I-Connect007 Editorial Team
Michael Carano is a noted subject matter expert with respect to process control, electroplating and metallization technology, surface finishing, and reliability. So, it was only natural that we sat down to talk about mechanizing an existing facility given today’s fickle environment. Will any of the CHIPS funding trickle down to bare board fabrication? What process can be adjusted on the factory floor? The focus needs to be more than just on manufacturing and getting work out the door, he says, but also process control.



Copyright © 2022 I-Connect007. All rights reserved.