All About Flex: Plated Through-holes in Flexible Circuits


Reading time ( words)

There is probably no more important feature than the plated through-hole (also called via or via hole) with regard to the reliability and integrity of a flexible circuit. The through-hole provides electrical connection between insulated layers and enables electrical functionality on double-sided and multilayer flexible circuits.

There are a number of methods that a flex circuit manufacturer may use when generating a via hole.  For example, one can create through-holes on a panel with no circuit patterns defined, or one can insert the through-holes after the circuit traces have been imaged and etched. There are advantages and disadvantages for both situations, but the basics of creating a through-hole are the same.

The first step in via formation is to create a hole through the laminate. The hole can be created by mechanical drilling, laser drilling or punching. Once the hole has been drilled, an adhesive-based laminate will look similar to the diagram below:

Fig1.JPGFigure 1: Through-hole, side view.

Figure 1 depicts the case where a laminate consisting of copper foil, adhesive, dielectric, adhesive and copper foil are used. Adhesiveless laminates are also very popular and are produced with a variety of technologies that bond copper to dielectrics sans adhesive.

Electroplating is a process where metal ions are bonded to a metal surface. The process requires a voltage potential between a copper source (anode) and the plating target (copper circuit). Both the anode and copper circuit are immersed in a copper sulphate solution with an applied voltage potential. This promotes ion flow from the anode to the cathode (the circuit). Areas of a circuit panel with a voltage potential will get plated, so any part of a copper circuit that is electrically isolated will not get plated. Since copper layers are separated by dielectric materials, and there is no electrical charge going through the through-hole, electroplating between layers is not possible. In order to allow electroplating, a conductive “bridge” must be coated over the insulating layer.

The two most common methods for creating that conductive bridge are:

  • Electroless copper plating
  • Shadow plating

Share




Suggested Items

Michael Carano: A Focus on Process Control, Part 2

09/28/2022 | I-Connect007 Editorial Team
In this second half of our conversation, Michael Carano discusses some of the metrics that fabricators need to consider before investing in new processes, especially process control technologies, and some of the challenges board shops face updating brownfield sites.

Catching Up With John Johnson, New Director of Business Development at ASC

09/28/2022 | Dan Beaulieu, D.B. Management Group
It’s always good to catch up with old friends, especially when you can start working together. I recently spoke with my friend John Johnson, who has joined American Standard Circuits as the director of business development. At ASC, John will be using the Averatek A-SAP process that he was previously involved with. He shares some of his background and provides insight on the best ways to use this semi-additive PCB fabrication process that opens the capability window for forming trace and space.

A Focus on Process Control, Part 1

09/27/2022 | I-Connect007 Editorial Team
Michael Carano is a noted subject matter expert with respect to process control, electroplating and metallization technology, surface finishing, and reliability. So, it was only natural that we sat down to talk about mechanizing an existing facility given today’s fickle environment. Will any of the CHIPS funding trickle down to bare board fabrication? What process can be adjusted on the factory floor? The focus needs to be more than just on manufacturing and getting work out the door, he says, but also process control.



Copyright © 2022 I-Connect007. All rights reserved.